
Adaptive Structure Learning with Partial Parameter Sharing for
Post-Click Conversion Rate Prediction

Chunyuan Zheng

Peking University

Beijing, China

cyzheng@stu.pku.edu.cn

Hang Pan

University of Science and Technology of China

Hefei, China

hungpaan@mail.ustc.edu.cn

Yang Zhang

National University of Singapore

Singapore, Singapore

zyang1580@gmail.com

Haoxuan Li
∗

Peking University

Beijing, China

hxli@stu.pku.edu.cn

Abstract
The post-click conversion rate (CVR) prediction task aims to predict

the probability of a conversion after a click, which is essential in

many fields. There are two widely-recognized challenges for CVR

prediction: selection bias and data sparsity. Many previous methods

focus on addressing selection bias by unbiasedly estimating the

ideal loss based on the doubly robust estimator, which incorpo-

rates the error imputation model and propensity model to help

CVR prediction model learning. However, they struggle with un-

reasonable knowledge transfer between the prediction model and

imputation model and inflexible network structure design under

sparse data. To this end, we introduce a novel principled adap-

tive structure learning approach, named Adap-SL, to adaptively

learn the optimal network structure, adjust the number of activated

(non-zero) parameters, and determine which knowledge needs to

be transferred between the prediction model and the imputation

model. Specifically, we start with an over-parameterized base net-

work, where we adaptively extract partially overlapped subnet-

works for the imputationmodel and the predictionmodel. Extensive

experiments are conducted on three real-world recommendation

datasets, demonstrating that our method consistently improves per-

formance while requiring fewer parameters. The code is available

at https://github.com/ChunyuanZheng/sigir25-sparse-sharing.
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1 Introduction
To develop a recommender system for e-commerce [31, 56, 67, 69],

the post-click conversion rate (CVR) prediction is one of the essen-

tial tasks, which aims to predict the probability of conversion after

a click. There are two widely-recognized challenges:

• Selection Bias: Due to the self-selection behavior of users and

the item selection process in the system, the collected conversion

distribution is not a representative for all users and items [3, 33, 64].

Taking the movie recommendation system as an example, users

might be more likely to see movies they think they will like, and

thenmake ratings for themovies they have seen [38, 48]. This would

create a systematic bias towards observing ratings with higher

values, which poses a critical challenge for unbiased evaluation and

learning of the prediction models [21, 22, 48, 58].

•Data Sparsity:We have no chance to collect the conversion for

unclicked data, and the proportion of clicked data is always small

in RS datasets, such as 2% for Yahoo! R3 [38], 4% for Movielens-

1M [60], and 8% for Coat [48] datasets. Thus, the number of training

samples may not be sufficient for the large parameter space [55, 68].

Causality-based techniques provide a promising direction for

addressing these issues [43, 52, 53, 57]. Many previous methods

focus on addressing selection bias by unbiasedly estimating the ideal

loss, which is defined as the average prediction error across all user-

item pairs [20, 26, 44, 51]. Among them, the most popular one is the

doubly robust (DR) based methods [24, 46, 60], which incorporates

the error imputation model and propensity model to help CVR

prediction model learning, and results in unbiased prediction when

either the imputation model or the propensity model is accurate

for all users and items. In DR-based methods, the imputed errors

are defined upon the prediction model, and the prediction model is

trained by minimizing the DR loss affected by the imputation model,

resulting in a correlation between the prediction and imputation

models. In addition, DR-based methods contain multiple models

that are difficult to be sufficiently learned under sparse data, which

may lead to inappropriate model fitting. Thus, developing a learning
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(a) Joint Learning (JL) [60] (b) Double Learning (DL) [12]

(c) Multi-Task Learning (MTL) [55, 68] (d) Adaptive Structure Learning (Ours)

Figure 1: Illustration of the learning paradigms between the
prediction model and the imputation model in DR learning.

algorithm that achieves both parameter efficiency and appropriate

knowledge transfer between the prediction and imputation models

is important for accurate CVR prediction.

Many algorithms have been proposed, such as joint learning

(JL) [60] and double learning (DL) [12]. Specifically, as shown in

Figure 1(a), JL alternatively updates the prediction model and the

imputation model with separate losses, embedding tables, and net-

work structures to minimize both prediction and imputation inac-

curacies. Based on JL, DL further regularly copies the prediction

model parameters to the imputation model for enhancing knowl-

edge transfer, as shown in Figure 1(b). However, these methods may

still suffer from over-parametrization. In addition, the knowledge

transfer is unreasonable due to hard copy parameters. There are also

many multi-task learning-based methods, such as Multi-DR [68],

ESCM
2
-DR [55], and DCMT [71], as shown in Figure 1(c). They

share the embedding tables between the prediction and the impu-

tation model and learn two models simultaneously. Nevertheless,

without data information, the pre-specified sharing mechanism

cannot effectively capture the prediction model and imputation

correlation, especially under sparse data.

To this end, inspired by the lottery ticket hypothesis [9], we

introduce a novel principled adaptive structure learning approach,

named Adap-SL (as shown in Figure 1(d)), which adaptively learns

the optimal network structure, adjusts the number of activated

(non-zero) parameters, and determines which knowledge needs to

be transferred between prediction and imputation models. With-

out prior knowledge, we start with an over-parameterized base

network, from which we adaptively extract partially overlapped

subnetworks for prediction and imputation models. In particular,

the overlapped part can efficiently transfer knowledge between

the two models, while the non-overlapped part accounts for the

task-specific knowledge. The contributions are summarized below.

• We reveal the problem that previous DR-based methods struggle

with unreasonable knowledge transfer between the prediction

model and imputation model and inflexible network structure

design under sparse data.

• We propose an adaptive structure learning approach to adaptively

learn the optimal network structure, adjust the number of acti-

vated parameters, and determine which knowledge needs to be

transferred between the prediction model and imputation model

by combining adaptive pruning and partial sharing mechanisms

together in model training.

• Extensive experiments conducted on three real-world datasets

demonstrate the effectiveness of our method.

2 Related Work
2.1 Debiased Recommendation
Selection bias is one of the most common bias in CVR prediction

task [45, 59, 64, 65]. To address the bias, many debiasing methods

are proposed [14, 19, 29, 63]. For example, error imputation-based

(EIB) methods are proposed to estimate the prediction error for

missing events [1, 16, 49], while inverse propensity score (IPS)

methods re-weight the observed prediction error based on the in-

verse probability of being observed [17, 34, 47, 48]. Doubly robust

(DR) methods combine both error imputation and inverse propen-

sity re-weighting models, offering unbiased estimation when either

model is accurate [54, 60]. Moreover, Li et al. [23] validate that bal-

ancing property is important for propensity learning, and Li et al.

[25] further explore which function should be balanced. With a

few randomized controlled trial (RCT) data available in the training

stage, prior works propose to perform model selection through bi-

level optimization to further debias [2, 28, 61]. However, previous

methods struggle with unreasonable knowledge transfer between

the prediction model and imputation model, and inflexible network

structure design under sparse data. Our approach proposes a novel

adaptive structure learning approach to address the above concerns.

2.2 Lottery Ticket Hypothesis
The lottery ticket hypothesis (LTH) is one of the most influential

hypotheses in the field of neural network pruning [5, 9, 27, 32]. For

a network, LTH iteratively removes a certain percentage of parame-

ters based on their size. After pruning, the remaining parameters are

retrained from scratch using their original initialization to achieve

the same performance as the original network. Recently, some stud-

ies [8, 30, 37, 41] improve the theoretical foundation of LTH. Ma

et al. [35] provide a more rigorous definition of LTH for precisely

identifying winning tickets, while Zhang et al. [66] offer a formal

proof for the improved generalization of winning tickets observed

in LTH experiments. Diffenderfer and Kailkhura [7] introduce the

Multi-Prize Tickets (MPT) algorithm to find MPT in binary neu-

ral networks. Other research [10, 40] extends LTH to a broader

range of application tasks. For example, Mehta [39] proposes the

lottery ticket transfer hypothesis in the image classification domain

and transfers winning tickets between different image classifica-

tion datasets. Prasanna et al. [42] explore the existence of winning

tickets in fine-tuned language models and identify sub-networks
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that match the model’s performance. Chen et al. [4] extend LTH

to Graph Neural Networks in node classification and link predic-

tion tasks. In our paper, we extend the sharing mechanism in LTH

by partially sharing the parameter between the prediction model

and imputation model to maintain both the common and specific

knowledge of each model.

2.3 Post-Click Conversion Rate Prediction
In industrial applications, the click-through rate (CTR) and post-

click conversion rate (CVR) prediction are regarded as the two

most fundamental tasks. Unlike debiased recommendations, the

challenge in the CVR prediction task lies not only in addressing

selection bias in the data but also in overcoming the data sparsity

challenges in model training. To address both selection bias and

data sparsity, Ma et al. [36] propose to model the product of CTR

and CVR, referred to as CTCVR, to estimate CVR in the entire

space, thereby mitigating the selection bias issue. Additionally, a

parameter-sharing strategy is introduced to tackle the data sparsity

challenge. Building on this, Zhang et al. [68] further propose an

unbiased estimator and introduces multi-task learning to achieve

efficient learning on industrial large-scale datasets. On the other

hand, Wang et al. [55] consider incorporating IPS or DR loss, which

serves as an unbiased estimator for CVR loss, into the ESMM ob-

jective function to further reduce bias. Moreover, Guo et al. [12]

propose to reduce the variance of the DR estimator in the CTCVR

task and introduce double learning for imputation model training.

Dai et al. [6] consider the trade-off between the bias and variance of

the DR estimator, aiming for lower generalization error, and Zhou

et al. [70] propose using additional regularization to constrain the

learning of the propensity model in IPS and DR estimators. Zhu et al.

[71] propose to predict both factual and counterfactual CVR under

the soft constraint of a counterfactual prior knowledge. However,

without data information, the pre-specified sharing mechanism of

previous methods cannot effectively and efficiently capture the pre-

diction model and imputation correlation, especially under sparse

data. We learn a sharing mechanism and network structure that

adaptively addresses these issues in this paper.

3 Preliminaries
LetU = {𝑢1, 𝑢2, . . . , 𝑢𝑚} be the set of𝑚 users, I = {𝑖1, 𝑖2, . . . , 𝑖𝑛}
be the set of 𝑛 items, andD = U×I be the set of all user-item pairs.

Denote R ∈ {0, 1}𝑚×𝑛 as the post-click conversion label matrix of

user-item pairs, where 𝑟𝑢,𝑖 = 1 indicates that user 𝑢 converted on

item 𝑖 after click and 𝑟𝑢,𝑖 = 0 otherwise. Denote 𝑥𝑢,𝑖 as the feature

of user-item pair (𝑢, 𝑖), R̂ ∈ R𝑚×𝑛 as the prediction matrix for CVR,

where 𝑟𝑢,𝑖 = 𝑓 (𝑥𝑢,𝑖 ;𝜃 ) ∈ [0, 1] is the predicted CVR by a prediction

model parameterized by 𝜃 . If R is fully observed, the CVR prediction

model 𝑓 (𝑥𝑢,𝑖 ;𝜃 ) can be trained by minimizing the ideal loss:

L𝑖𝑑𝑒𝑎𝑙 (𝜃 ) =
1

|D|
∑︁
(𝑢,𝑖 ) ∈D

𝑒𝑢,𝑖 , (1)

where 𝑒𝑢,𝑖 is the prediction error, such as the cross entropy loss

𝑒𝑢,𝑖 = 𝐶𝐸 (𝑟𝑢,𝑖 , 𝑟𝑢,𝑖 ) = −𝑟𝑢,𝑖 log 𝑟𝑢,𝑖 −
(
1 − 𝑟𝑢,𝑖

)
log

(
1 − 𝑟𝑢,𝑖

)
. In real

recommendation scenarios, some users do not click on some items,

resulting in the challenge of unbiased estimation of the ideal loss.

Let 𝑜𝑢,𝑖 be the indicator of user 𝑢 clicking on item 𝑖 , then 𝑟𝑢,𝑖 with

𝑜𝑢,𝑖 = 0 are not directly observable. Therefore, directly optimiz-

ing the ideal loss is not feasible. The Naive estimator optimizes

the prediction model by minimizing the average prediction error

corresponding to the click event:

L𝑁𝑎𝑖𝑣𝑒 (𝜃 ) =
1

|O|
∑︁
(𝑢,𝑖 ) ∈O

𝑒𝑢,𝑖 =
1

|O|
∑︁
(𝑢,𝑖 ) ∈D

𝑜𝑢,𝑖𝑒𝑢,𝑖 , (2)

where O = {(𝑢, 𝑖) | (𝑢, 𝑖) ∈ D, 𝑜𝑢,𝑖 = 1} is the set of clicked user-

item pairs. The Naive estimator is unbiased when the click event

is missing at random (MAR). However, the presence of selection

bias makes the data missing not at random (MNAR) and the clicked

events are no longer representative of all events.

To address this problem, many debiased recommendation meth-

ods have been proposed. The EIB method directly fits the prediction

error 𝑒𝑢,𝑖 corresponding to unclicked events. The estimator is:

L𝐸𝐼𝐵 (𝜃 ) =
1

|D|
∑︁
(𝑢,𝑖 ) ∈D

𝑜𝑢,𝑖𝑒𝑢,𝑖 + (1 − 𝑜𝑢,𝑖 )𝑒𝑢,𝑖 , (3)

where 𝑒𝑢,𝑖 =𝑚(𝑥𝑢,𝑖 ;𝜙) is the imputed prediction error given by an

imputation model. The EIB estimator is unbiased when imputed

errors are accurate, i.e., 𝑒𝑢,𝑖 = 𝑒𝑢,𝑖 .

The IPS method reweights the clicked samples by 1/𝑝𝑢,𝑖 , where
𝑝𝑢,𝑖 = Pr(𝑜𝑢,𝑖 = 1|𝑥𝑢,𝑖 ) denotes probability of a user 𝑢 clicking on

an item 𝑖 , i.e., the propensity or click-through rate (CTR) in CVR

prediction. The IPS estimator is given as:

L𝐼𝑃𝑆 (𝜃 ) =
1

|D|
∑︁
(𝑢,𝑖 ) ∈D

𝑜𝑢,𝑖𝑒𝑢,𝑖

𝑝𝑢,𝑖
, (4)

where 𝑝𝑢,𝑖 = 𝜋 (𝑥𝑢,𝑖 ;𝜓 ) is the learned propensity given by a CTR

prediction model. The IPS estimator is unbiased when the propen-

sities of all user-item pairs are accurately estimated, i.e., 𝑝𝑢,𝑖 = 𝑝𝑢,𝑖 .

The doubly robust (DR) estimator and its variants have demon-

strated superior performance in debiasing, which is given by:

L𝐷𝑅 (𝜃 ) =
1

|D|
∑︁
(𝑢,𝑖 ) ∈D

[
𝑒𝑢,𝑖 +

𝑜𝑢,𝑖 (𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )
𝑝𝑢,𝑖

]
, (5)

which is an unbiased estimate of the ideal loss when either the

imputed errors 𝑒𝑢,𝑖 =𝑚(𝑥𝑢,𝑖 ;𝜙) or the learned propensities 𝑝𝑢,𝑖 =

𝜋 (𝑥𝑢,𝑖 ;𝜓 ) are correctly estimated, i.e., 𝑒𝑢,𝑖 = 𝑒𝑢,𝑖 or 𝑝𝑢,𝑖 = 𝑝𝑢,𝑖 .

4 Proposed Methods
4.1 Motivation
We first conduct the experiment to illustrate the insufficient knowl-

edge transfer and unreasonable parameter-sharing mechanisms

of previous methods. The JL methods adopt separate embedding

tables and neural network structures for the prediction and impu-

tation. Figures 2(a) and 2(b) show the histograms of the parameter

weights for the prediction model and the imputation model, respec-

tively, after the convergence of the training process. We find that

many parameters in the prediction model and imputation model are

around 0, which reveals that these two models might suffer over-

parametrization, especially given the close relationship between

the error imputation task and the unbiased prediction task. In addi-

tion, we found a similar phenomenon in the MTL-based method,

such as ESCM
2
-DR. Note that ESCM

2
-DR performs better than

DR-JL, because ESCM
2
-DR shares the embedding table between
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Figure 2: Over-parametrization of previous learning ap-
proach (a-b) and unreasonable sharing mechanism (c-d).

two models. Based on JL, DL further regularly copies the prediction

model parameters to the imputation model for enhancing knowl-

edge transfer, but raises another concern. From Figure 2(c) and

Figure 2(d), the direct copying of all neural network weights results

in significant differences (|𝜃−𝜙 |/|𝜙 | > 1) in neural network weights

of the imputation model before and after periodically copying all

weights from the prediction model, resulting in greater imputa-

tion loss. Though the difference ratio decreases during the model

training process, there are still around 10% of weights significantly

different. Therefore, it is beneficial to develop a learning approach

for more effective knowledge transfer between the prediction and

imputation models, and more reasonable sharing mechanism and

network structure design with data information.

Specifically, we propose an adaptive structure learning approach

to adaptively learn the optimal network structure and determine

which knowledge needs to be transferred for debiasing, which

consists of two components: partial sharing and adaptive pruning.

The overview of the proposed method is shown in Figure 4. The

motivation behind partial sharing is to partially share parameters to

enhance flexibility of knowledge transfer between the imputation

and prediction models. Specifically, the imputation and prediction

models partition their parameters into specific and common parts:

the common part is shared with the other model, and the specific

part remains as the model’s private parameter. Adaptive pruning

aims to answer the question of "what parameters need to be shared"

and to achieve parameter efficiency by pruning parameters in each

model to prevent overfitting under sparse data while maintaining

performance. In addition, Figure 3 demonstrates the advantage

of our method in terms of the parameter number, which helps to

prevent overfitting under sparse data. Before further elaborating

these two components, we first provide the theoretical guarantees

for our adaptive structure learning approach.

Multi-DR

Adap-SL-DR (ours)

Multi-IPS

MRDR-DL

DR-JL

Multi-DR0x
1x

2x
3x

Number of embedding parameter

(a) Number of embedding parameter

Multi-DR

Adap-SL-DR (ours)

Multi-IPS

MRDR-DL

DR-JL

Multi-DR0x
1x

2x
3x

Number of neural network parameter

(b) Number of neural network parameter

Figure 3: The parameter numbers of different methods.

4.2 Theoretical Guarantee
Suppose there is a network 𝐺 with width 𝑛 and depth 𝑙 and a

masked-subnetwork 𝐺̃ of𝐺 with the same width and depth. Denote

the weight of i-th layer in𝐺 and 𝐺̃ as𝑊𝐺 (𝑖 ) and𝑊𝐺̃ (𝑖 ) , respectively.

𝑊
𝐺̃ (𝑖 ) =𝑊𝐺 (𝑖 ) ⊙ 𝑀𝑖 , where 𝑀𝑖 ∈ {0, 1}𝑛𝑖𝑛×𝑛𝑜𝑢𝑡 is a binary mask

matrix, where 𝑛𝑖𝑛 and 𝑛𝑜𝑢𝑡 are the width of input layer and output

layer. The main theoretical result in this section is to show that for

every target network of depth 𝑙 with bounded weights, a random

network of depth 2𝑙 and polynomial width with high probability

contains a subnetwork that approximates the target network. We

formally state the results in the following theorem.

Theorem 1 (Existence of Sparse Subnetwork Structure [37]).

Fix some 𝜖, 𝛿 ∈ (0, 1). Let 𝐹 be some target network of depth 𝑙 such that
for every 𝑖 ∈ [𝑙], we have ∥𝑊𝐹 (𝑖 ) ∥2 ≤ 1, ∥𝑊𝐹 (𝑖 ) ∥max ≤ 1√

𝑛𝑖𝑛
(where

𝑛𝑖𝑛 = 𝑑 for 𝑖 = 1 and 𝑛𝑖𝑛 = 𝑛 for 𝑖 > 1). Let 𝐺 be a network of width
poly(𝑑, 𝑛, 𝑙, 1𝜖 , log

1

𝛿
) and depth 2𝑙 , where𝑊𝐺 (𝑖 ) is from𝑈 ( [−1, 1]).

Then, with probability at least 1 − 𝛿 there exists a weight-subnetwork
𝐺̃ of 𝐺 such that:

sup

𝑥∈X
|𝐺̃ (𝑥) − 𝐹 (𝑥) | ≤ 𝜖. (6)

Moreover, the number of active (non-zero) weights in 𝐺̃ is𝑂 (𝑑𝑛+𝑛2𝑙).

This theorem guarantees that in an over-parameterized net-

work, there exists a subnetwork structure that can approximate the

ground-truth network structure with the same order of non-zero

parameters compared to the ground-truth network, which ensures

the existence of a sparse converged network.

4.3 Partial Sharing of Model Parameters
Partial sharing aims to facilitate the transformation and sharing of

information between models while maintaining model flexibility.

Formally, the parameters 𝜃 of the prediction model 𝑓𝜃 and the

parameters 𝜙 of the imputation model 𝑔𝜙 are divided into 𝜃𝑠𝑒𝑙 𝑓 and

𝜃𝑠ℎ𝑎𝑟𝑒 , and 𝜙𝑠𝑒𝑙 𝑓 and 𝜙𝑠ℎ𝑎𝑟𝑒 , respectively. The shared parameters

𝜃𝑠ℎ𝑎𝑟𝑒 and 𝜙𝑠ℎ𝑎𝑟𝑒 are kept equal during optimization, while 𝜃𝑠𝑒𝑙 𝑓

and 𝜙𝑠𝑒𝑙 𝑓 are optimized independently during training. During the

training process, both 𝜃 and 𝜙 are pruned to reduce the scale of the

prediction model and the imputation model, and we only share the

parameters that remained in both the prediction and imputation

models. We will discuss this in detail below.
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Figure 4: The overview of our end-to-end adaptive structure learning framework is as follows: (1) The shared network is initially
fully connected, with adaptive pruning applied to both the prediction and imputation networks during model training. (2) For
partially shared embeddings, common and task-specific embeddings are then separately masked for each model after removing
irrelevant embeddings. The final result is a convergent network structure.

4.3.1 Partially Shared Embedding Layers. Given a user-item pair

(𝑢, 𝑖), the collaborative filtering model will first obtain a user em-

bedding 𝑝𝑢 ∈ R𝑘
and an item embedding 𝑞𝑖 ∈ R𝑘

to the pair where

𝑘 is the dimension of the embedding and 𝑝𝑢 and 𝑞𝑖 are learnable

parameters. The imputation model 𝑔𝜙 assigns 𝑝𝑢,𝜙 and 𝑞𝑖,𝜙 and the

prediction model 𝑓𝜃 assigns 𝑝𝑢,𝜃 and 𝑞𝑖,𝜃 respectively. To share the

embedding, without loss of generality, we define 𝑝𝑠ℎ𝑎𝑟𝑒𝑢 ∈ R𝑘/2
and

𝑞𝑠ℎ𝑎𝑟𝑒
𝑖

∈ R𝑘/2
as the sharing embedding for the user-item pair (𝑢, 𝑖)

and 𝑝
𝑠𝑒𝑙 𝑓

𝑢,𝜃
∈ R𝑘/2

, 𝑞
𝑠𝑒𝑙 𝑓

𝑖,𝜃
∈ R𝑘/2

, 𝑝
𝑠𝑒𝑙 𝑓

𝑢,𝜙
∈ R𝑘/2

and 𝑞
𝑠𝑒𝑙 𝑓

𝑖,𝜙
∈ R𝑘/2

as

the private embedding for the corresponding model respectively

for the user-item pair (𝑢, 𝑖), which means we share half parame-

ters for each model. Then, the partially shared embedding for the

imputation model 𝑔𝜙 is defined as:

𝑝𝑃𝑆
𝑢,𝜙

=

[
𝑝𝑠ℎ𝑎𝑟𝑒𝑢

𝑝
𝑠𝑒𝑙 𝑓

𝑢,𝜙

]
and 𝑞𝑃𝑆

𝑖,𝜙
=

[
𝑞𝑠ℎ𝑎𝑟𝑒
𝑖

𝑞
𝑠𝑒𝑙 𝑓

𝑖,𝜙

]
, (7)

and the embedding for the prediction model 𝑓𝜃 is defined as:

𝑝𝑃𝑆
𝑢,𝜃

=

[
𝑝𝑠ℎ𝑎𝑟𝑒𝑢

𝑝
𝑠𝑒𝑙 𝑓

𝑢,𝜃

]
and 𝑞𝑃𝑆

𝑖,𝜃
=

[
𝑞𝑠ℎ𝑎𝑟𝑒
𝑖

𝑞
𝑠𝑒𝑙 𝑓

𝑖,𝜃

]
. (8)

Then, we can construct the shared embeddingmatrix by considering

a user embedding matrix 𝑃 ∈ R |U |×𝑘 contains the embedding all

the users and an item embedding matrix 𝑄 ∈ R | I |×𝑘 contains the

embedding all the items. Thus, we define the private embedding

matrix 𝑃
𝑠𝑒𝑙 𝑓

𝜙
∈ R |U |×𝑘/2 and 𝑄𝑠𝑒𝑙 𝑓

𝜙
∈ R | I |×𝑘/2 for the imputation

model as:

𝑃
𝑠𝑒𝑙 𝑓

𝜙
= [𝑝𝑠𝑒𝑙 𝑓

𝑢1,𝜙
, . . . , 𝑝

𝑠𝑒𝑙 𝑓

𝑢𝑚,𝜙
]𝑇 and 𝑄

𝑠𝑒𝑙 𝑓

𝜙
= [𝑞𝑠𝑒𝑙 𝑓

𝑖1,𝜙
, . . . , 𝑞

𝑠𝑒𝑙 𝑓

𝑖𝑛,𝜙
]𝑇 , (9)

and 𝑃
𝑠𝑒𝑙 𝑓

𝜃
∈ R |U |×𝑘/2 and 𝑄

𝑠𝑒𝑙 𝑓

𝜃
∈ R | I |×𝑘/2 for the prediction

model as:

𝑃
𝑠𝑒𝑙 𝑓

𝜃
= [𝑝𝑠𝑒𝑙 𝑓

𝑢1,𝜃
, . . . , 𝑝

𝑠𝑒𝑙 𝑓

𝑢𝑚,𝜃
]𝑇 and 𝑄

𝑠𝑒𝑙 𝑓

𝜃
= [𝑞𝑠𝑒𝑙 𝑓

𝑖1,𝜃
, . . . , 𝑞

𝑠𝑒𝑙 𝑓

𝑖𝑛,𝜃
]𝑇 . (10)

Then, we define the partially shared user embeddingmatrix 𝑃𝑠ℎ𝑎𝑟𝑒 ∈
R |U |×𝑘/2 and item embedding matrix 𝑄𝑠ℎ𝑎𝑟𝑒 ∈ R | I |×𝑘/2 as:

𝑃𝑠ℎ𝑎𝑟𝑒 = [𝑝𝑠ℎ𝑎𝑟𝑒𝑢1

, . . . , 𝑝𝑠ℎ𝑎𝑟𝑒𝑢𝑚
]𝑇 and 𝑄𝑠ℎ𝑎𝑟𝑒 = [𝑞𝑠ℎ𝑎𝑟𝑒𝑖1

, . . . , 𝑞𝑠ℎ𝑎𝑟𝑒𝑖𝑛
]𝑇 .
(11)

Last, we construct the final user embedding matrix 𝑃𝑃𝑆
𝜙
∈ R |U |×𝑘

and item embedding matrix 𝑄𝑃𝑆
𝜙
∈ R | I |×𝑘 for the imputation

model by stacking the corresponding partially shared embedding

matrix and the private embedding matrix as:

𝑃𝑃𝑆
𝜙

=

[
𝑃𝑠ℎ𝑎𝑟𝑒 , 𝑃

𝑠𝑒𝑙 𝑓

𝜙

]
and 𝑄𝑃𝑆

𝜙
=

[
𝑄𝑠ℎ𝑎𝑟𝑒 , 𝑄

𝑠𝑒𝑙 𝑓

𝜙

]
. (12)

Similarly, we construct the final user embedding matrix 𝑃𝑃𝑆
𝜃
∈

R |U |×𝑘 and item embedding matrix 𝑄𝑃𝑆
𝜃
∈ R | I |×𝑘 for the predic-

tion model as:

𝑃𝑃𝑆
𝜃

=

[
𝑃𝑠ℎ𝑎𝑟𝑒 , 𝑃

𝑠𝑒𝑙 𝑓

𝜃

]
and 𝑄𝑃𝑆

𝜃
=

[
𝑄𝑠ℎ𝑎𝑟𝑒 , 𝑄

𝑠𝑒𝑙 𝑓

𝜃

]
. (13)

4.3.2 Sharing Linear Layers. Given the user embedding 𝑝𝑢 and the

item embedding 𝑞𝑖 , the collaborative filtering model first concate-

nates 𝑝𝑢 and 𝑞𝑖 and then passes the concatenated vector through

237



SIGIR ’25, July 13–18, 2025, Padua, Italy. Chunyuan Zheng, Hang Pan, Yang Zhang, & Haoxuan Li

MLP layers, where each MLP contains several linear layers fol-

lowed by the activation layer. To implement our proposed Adap-SL

method, we construct a partially shared MLP by replacing the lin-

ear layers in the MLP with partially shared linear layers. Formally,

we define the partially shared linear layer of our Adap-SL method.

Given the impute dimension 𝑘𝑖𝑛 and the output demension 𝑘𝑜𝑢𝑡 ,

we first define the shared linear layer 𝐿𝑁 𝑠ℎ𝑎𝑟𝑒 (·) as:

𝐿𝑁 𝑠ℎ𝑎𝑟𝑒 (𝑥) =𝑊𝑇
𝑠ℎ𝑎𝑟𝑒

𝑥 + 𝑏𝑠ℎ𝑎𝑟𝑒 , (14)

where 𝑥 ∈ R𝑘𝑖𝑛
is the input vector,𝑊𝑠ℎ𝑎𝑟𝑒 ∈ R𝑘𝑖𝑛×𝑘𝑜𝑢𝑡 /2

is the

weight matrix and 𝑏𝑠ℎ𝑎𝑟𝑒 ∈ R𝑘𝑜𝑢𝑡 /2
is the bias. Similarly, we define

the private linear layer 𝐿𝑁 𝑠𝑒𝑙 𝑓 (·) as:

𝐿𝑁 𝑠𝑒𝑙 𝑓 (𝑥) =𝑊𝑇
𝑠𝑒𝑙 𝑓

𝑥 + 𝑏𝑠𝑒𝑙 𝑓 , (15)

where 𝑥 ∈ R𝑘𝑖𝑛
is the input vector,𝑊𝑠𝑒𝑙 𝑓 ∈ R𝑘𝑖𝑛×𝑘𝑜𝑢𝑡 /2

is the

weight matrix and 𝑏𝑠𝑒𝑙 𝑓 ∈ R𝑘𝑜𝑢𝑡 /2
is the bias.

Then we define the partially shared linear layer for the imputa-

tion model 𝑔𝜙 as:

𝐿𝑁𝑃𝑆
𝜙
(𝑥) = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝐿𝑁 𝑠ℎ𝑎𝑟𝑒 (𝑥), 𝐿𝑁 𝑠𝑒𝑙 𝑓

𝜃
(𝑥)), (16)

and the partially shared linear layer for the prediction model 𝑓𝜃 as:

𝐿𝑁𝑃𝑆
𝜃
(𝑥) = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝐿𝑁 𝑠ℎ𝑎𝑟𝑒 (𝑥), 𝐿𝑁 𝑠𝑒𝑙 𝑓

𝜃
(𝑥)) . (17)

Thus, the imputation model and the prediction model share the pa-

rameters in 𝐿𝑁 𝑠ℎ𝑎𝑟𝑒 (·) while keeping the parameters in 𝐿𝑁
𝑠𝑒𝑙 𝑓

𝜙
(·)

and 𝐿𝑁
𝑠𝑒𝑙 𝑓

𝜃
(·) independent.

Then we combine the constructed partially shared embedding

and the partially shared MLP. For a user-item pair (𝑢, 𝑖), the impu-

tation model with 𝐿 layers of partially shared MLP is as below:

𝑧1 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑝𝑃𝑆𝑢,𝜙 , 𝑞
𝑃𝑆
𝑖,𝜙
), 𝑧2 = 𝑎2 (𝐿𝑁𝑃𝑆

2,𝜙
(𝑧1)), . . . , (18)

𝑧𝐿 = 𝑎𝐿 (𝐿𝑁𝑃𝑆
𝐿,𝜙
(𝑧𝐿−1)), 𝑟𝑢,𝑖 = 𝜎 (ℎ𝑇 𝑧𝐿), (19)

where 𝑎𝑙 is the activation layer of the 𝑙-th MLP. The prediction

model shares the same structure as the imputation model.

4.4 Adaptive Sparse Pruning of Model
Parameters

In this section, we prune the imputation model and the prediction

model to overcome the data sparsity problem and to decide which

knowledge needs to be shared. Inspired by [50], we introduce a

hard mask 𝑀𝜙 ∈ {0, 1} |𝜙 | for 𝑔𝜙 and a mask 𝑀𝜃 ∈ {0, 1} |𝜃 | for
𝑓𝜃 . Instead of the entire network 𝑔𝜙 and 𝑓𝜃 , sub-networks 𝑔𝜙⊙𝑀𝜙

and 𝑓𝜃⊙𝑀𝜃
are used when making the imputation or the prediction,

where ⊙ denotes element-wise product. Specifically, taking the

imputation model as an example, if the 𝑗-th element 𝑀 [ 𝑗] = 1,

then the corresponding parameter 𝜙 [ 𝑗] is active when making

the imputation. On the other hand, if the 𝑗-th element 𝑀 [ 𝑗] = 0,

then the corresponding parameter 𝜙 [ 𝑗] is inactive. The pruning
rule is to prune the node with a minimum value of the weighted

normalized node weight and gradient. As the pruning process goes

on, the masks𝑀𝜙 and𝑀𝜃 contain more 0, and the imputation and

prediction models become sparse. Note that the mask will be nested

during the training phase. We also try the soft masks𝑀𝑆
𝜙
∈ [0, 1] |𝜙 |

and𝑀𝑆
𝜃
∈ [0, 1] |𝜃 | . However, this kind of mask cannot guarantee

Algorithm 1: Adaptive Structure Learning with Partial

Sharing

Input: Pre-trained propensity model 𝜋𝜓 ; Imputation model

𝑔𝜙 ; Prediction model 𝑓𝜃 ; Pruning rate 𝛼𝜙 , 𝛼𝜃 ;

Minimal sparsity 𝑆𝜙 , 𝑆𝜃 ; Warm up epoch 𝐸𝜙 , 𝐸𝜃 ;

Datasets D.

1 Randomly initialize 𝜙, 𝜃 ;

2 Initialize mask𝑀𝜙 = 1 |𝜙 | , 𝑀𝜃 = 1 |𝜃 | ;
3 𝐸𝑝𝑜𝑐ℎ ← 0;

4 while not convergent do
5 Train 𝑔𝜙⊙𝑀𝜙

, 𝑓𝜃⊙𝑀𝜃
simultaneously for 𝑘 steps using Eq

21 and Eq 22;

6 if 𝐸𝑝𝑜𝑐ℎ ≥ 𝐸𝜙 and
| |𝑀𝜙 | |0
|𝜙 | > 𝑆𝜙 then

7 Prune 𝛼𝜙 percent of the remaining parameters with

the lowest magnitudes from 𝜙 . That is, let

𝑀𝜙 [ 𝑗] = 0 if 𝜙 [ 𝑗] is pruned;
8 end

9 if 𝐸𝑝𝑜𝑐ℎ ≥ 𝐸𝜃 and
| |𝑀𝜃 | |0
|𝜃 | > 𝑆𝜃 then

10 Prune 𝛼𝜃 percent of the remaining parameters with

the lowest magnitudes from 𝜃 . That is, let

𝑀𝜃 [ 𝑗] = 0 if 𝜃 [ 𝑗] is pruned;
11 end
12 𝐸𝑝𝑜𝑐ℎ ← 𝐸𝑝𝑜𝑐ℎ + 1;
13 end

Output: 𝑔𝜙 , 𝑓𝜃 , 𝑀𝜙 , 𝑀𝜃 .

the nested model and cannot tackle the data sparsity issue because

the number of learnable parameters is not reduced, leading to a

sub-optimal performance.

Different from [50], where masks were trained and fixed at first

and then the backbone model was trained, we combine the pruning

and sharing procedure in an end-to-end manner. The insights are

because the two tasks (predict CVR and impute error) are related,

but also have some intrinsic differences. Specifically, we first define

the sparse rate for each model as

| |𝑀𝜙 | |0
|𝜙 | for 𝑔𝜙 and

| |𝑀𝜃 | |0
|𝜃 | for 𝑓𝜃

where | |𝑀 | |0 denotes the number of 0 in𝑀 . In each epoch, we first

train the models 𝑔𝜙⊙𝑀𝜙
and 𝑓𝜃⊙𝑀𝜃

simultaneously. Then we prune

each model with a prune rate 𝛼 if its sparse rate does not meet the

predefined sparsity criteria 𝑆𝜙 and 𝑆𝜃 . That is, we let 𝑀 [ 𝑗] = 0

for all 𝑗 such that the 𝑗-th parameter is among the 𝛼 percent of

the remaining parameters with the lowest magnitudes. We also

adopt the warm-up techniques. That is, we first train 𝐸𝜙 epochs

for the imputation model and 𝐸𝜃 epochs for the prediction model

before we start pruning. In doing so, we can make the initialized

parameters meaningful enough before the pruning.

Finally, for pre-train propensity model 𝑝𝑢,𝑖 = 𝜋 (𝑥𝑢,𝑖 ;𝜓 ), we use
the cross-entropy loss as below:

L𝑝 (𝜓 ) =
1

|D|
∑︁
(𝑢,𝑖 ) ∈D

[
−𝑜𝑢,𝑖 log(𝑝𝑢,𝑖 ) − (1 − 𝑜𝑢,𝑖 ) log(1 − 𝑝𝑢,𝑖 )

]
.

(20)

238



Adaptive Structure Learning with Partial Parameter Sharing for Post-Click Conversion Rate Prediction SIGIR ’25, July 13–18, 2025, Padua, Italy.

Table 1: Performance on AUC, Recall@K, and NDCG@K on the unbiased test set of Coat, Yahoo! R3, and KuaiRec. The best
results are bolded and the best baseline is underlined. * means statistical significance with p-value ≤ 0.05 under pairwise-t test.

Coat Yahoo! R3 KuaiRec

Method AUC R@5 N@5 AUC R@5 N@5 AUC R@50 N@50

NCF 0.757±0.005 0.476±0.006 0.686±0.008 0.684±0.001 0.450±0.002 0.684±0.003 0.835±0.001 0.705±0.002 0.643±0.002

IPS 0.769±0.004 0.473±0.007 0.686±0.007 0.688±0.003 0.450±0.004 0.671±0.003 0.838±0.002 0.715±0.003 0.643±0.003
SNIPS 0.771±0.003 0.475±0.003 0.684±0.005 0.688±0.001 0.452±0.002 0.679±0.002 0.837±0.001 0.712±0.001 0.647±0.001
AS-IPS 0.763±0.004 0.477±0.004 0.688±0.005 0.687±0.003 0.454±0.003 0.677±0.005 0.834±0.002 0.712±0.004 0.642±0.002
IPS-V2 0.770±0.004 0.476±0.004 0.684±0.005 0.692±0.004 0.455±0.003 0.675±0.005 0.838±0.003 0.714±0.002 0.652±0.002
Multi-IPS 0.761±0.003 0.482±0.005 0.682±0.005 0.691±0.004 0.452±0.006 0.678±0.005 0.839±0.003 0.716±0.002 0.648±0.002
ESCM2-IPS 0.768±0.004 0.483±0.006 0.682±0.009 0.692±0.005 0.453±0.005 0.683±0.006 0.841±0.002 0.716±0.002 0.651±0.002

DR-JL 0.767±0.002 0.477±0.004 0.682±0.004 0.696±0.003 0.453±0.004 0.678±0.004 0.840±0.001 0.714±0.003 0.651±0.003
MRDR-DL 0.769±0.003 0.479±0.005 0.676±0.009 0.695±0.002 0.453±0.003 0.679±0.004 0.838±0.002 0.713±0.002 0.651±0.003
DR-BIAS 0.772±0.003 0.477±0.005 0.680±0.005 0.697±0.002 0.454±0.003 0.680±0.003 0.838±0.002 0.713±0.004 0.653±0.004
DR-MSE 0.773±0.002 0.481±0.003 0.689±0.006 0.697±0.003 0.453±0.002 0.683±0.002 0.841±0.002 0.716±0.003 0.653±0.003
TDR-JL 0.772±0.003 0.483±0.004 0.689±0.007 0.696±0.005 0.454±0.004 0.684±0.006 0.840±0.002 0.715±0.004 0.656±0.003
DR-V2 0.770±0.004 0.487±0.005 0.691±0.004 0.690±0.003 0.451±0.003 0.682±0.005 0.840±0.003 0.717±0.005 0.652±0.003
Multi-DR 0.770±0.004 0.482±0.005 0.691±0.006 0.691±0.002 0.452±0.004 0.682±0.005 0.838±0.003 0.715±0.003 0.654±0.004
ESCM

2
-DR 0.772±0.003 0.485±0.003 0.690±0.009 0.695±0.004 0.456±0.002 0.687±0.003 0.842±0.002 0.723±0.002 0.653±0.002

KBDR 0.772±0.002 0.486±0.003 0.693±0.006 0.692±0.003 0.453±0.004 0.683±0.003 0.841±0.002 0.720±0.003 0.655±0.002
DCE-DR 0.770±0.003 0.489±0.003 0.693±0.006 0.693±0.004 0.456±0.004 0.687±0.002 0.841±0.001 0.719±0.003 0.654±0.002
DCMT 0.771±0.002 0.490±0.002 0.697±0.005 0.698±0.004 0.457±0.004 0.685±0.002 0.841±0.002 0.724±0.002 0.656±0.003

Adap-SL-DR 0.777∗±0.003 0.493∗±0.002 0.717∗±0.005 0.703∗±0.003 0.461∗±0.002 0.690±0.003 0.845∗±0.001 0.721±0.002 0.661∗±0.003

For training the CVR prediction model 𝑓𝜃⊙𝑀𝜃
, we use the DR loss,

which is shown below:

L𝐷𝑅 (𝜃 ⊙ 𝑀𝜃 ) =
1

|D|
∑︁
(𝑢,𝑖 ) ∈D

[
𝑒𝑢,𝑖 +

𝑜𝑢,𝑖 (𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )
𝑝𝑢,𝑖

]
. (21)

For training the error imputation model 𝑔𝜙⊙𝑀𝜙
, we use the mean

square error between the true prediction error and imputed error

on observed user-item pairs:

L𝑒 (𝜙 ⊙ 𝑀𝜙 ) =
1

|D|
∑︁
(𝑢,𝑖 ) ∈D

𝑜𝑢,𝑖 (𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )2
𝑝𝑢,𝑖

. (22)

The above-mentioned training process is illustrated in Algorithm 1.

5 Experiment
We conduct extensive experiments on three datasets: Coat [48],
Yahoo! R3 [38], and an industrial dataset KuaiRec [11]. These

datasets contain both biased data and unbiased data. Specifically,

Coat dataset contains 6,960 biased ratings and 4,640 unbiased rat-

ings from 290 users to 300 items, and each user self-selected 24 items

to rate and randomly rates 16 items. Yahoo! R3 dataset contains

311,704 biased ratings and 54,000 unbiased ratings from 15,400 users

to 1,000 items, andKuaiRec dataset contains 4,676,570 video watch-
ing ratio from 1,411 users to 3,327 items. Following [20, 23, 48, 60],

we binarize the ratings for Coat and Yahoo! R3 dataset by denot-

ing ratings less than three as negative conversion with label 0, and

otherwise as positive conversion with label 1. For KuaiRec, we
follow the data preprocessing in [18], and we binarize the watch

ratio by setting values less than two to 0 and otherwise to 1.

5.1 Baselines and Experiment Details
5.1.1 Baselines. We compare our method with the following de-

biasing methods, including: (1) IPS-based methods: IPS [48] and

SNIPS [48],AS-IPS [45], IPS-V2 [23],Multi-IPS [68], and ESCM2-
IPS [55]; (2) DR-based methods: DR-JL [60], MRDR [12], DR-
BIAS [6],DR-MSE [6], TDR-CL [20],DR-V2 [23],Multi-DR [68],

ESCM2-DR [55], KBDR [25], DCE-DR [18], and DCMT [71].

5.1.2 Experiment details. The backbone model for learning the pre-

diction model is selected as neural collaborative filtering (NCF) [15],

a highly adopted model in debiased recommendation. NCF uses

a neural embedding learning approach to understand the feature

embedding of users and items, modeling the user-item interaction

as a combinative function with these embeddings. We use Adam

as the optimizer for both the imputation and prediction models.

All experiments are run on Pytorch with NVIDIA GeForce RTX

3090 as the computational resource. We tune the learning rate in

{0.001, 0.005, 0.01, 0.05}, weight decay in {1𝑒 − 5, 5𝑒 − 5, 1𝑒 − 4, 5𝑒 −
4, 1𝑒 −3, 5𝑒 −3}, the embedding size of NCF in {4, 8, 16, 32} for Coat
dataset and {16, 32, 64, 128} for Yahoo and KuaiRec datasets, the
pruning rate 𝛼𝜙 , 𝛼𝜃 in {0.05, 0.1, 0.15, 0.2, 0.25}, the marginal spar-

sity threshold 𝑆𝜙 , 𝑆𝜃 in {0.1, 0.3, 0.5, 0.7}, and the warm-up epochs

in {2, 4, 6, 8, 10}. We set the batch size to 128 for Coat and 2048 for

both Yahoo! R3 and KuaiRec, and fixed the depth of the neural

network as 3. In addition, we use the logistic regression model for

propensity learning, thus there are no methods requiring unbiased

data for further training.

5.2 Evaluation Metrics
Following the previous studies [6, 48, 62], we adopted three metrics

for ranking or prediction tasks for evaluations: AUC, Recall@K
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Table 2: Ablation study on our Adap-SL method on three real-world datasets. The best results are bolded.

Coat Yahoo! R3 KuaiRec

Method AUC R@5 N@5 AUC R@5 N@5 AUC R@50 N@50

Adap-SL-DR 0.777±0.003 0.493±0.002 0.717±0.005 0.703±0.003 0.461±0.002 0.692±0.003 0.845±0.001 0.721±0.002 0.661±0.003
w/o share 0.772±0.003 0.491±0.003 0.712±0.007 0.700±0.003 0.453±0.002 0.684±0.002 0.843±0.001 0.716±0.003 0.655±0.003
w/o prune 0.772±0.003 0.486±0.005 0.702±0.008 0.699±0.004 0.458±0.004 0.686±0.002 0.841±0.001 0.724±0.003 0.653±0.004
w/o share w/o prune 0.767±0.002 0.477±0.004 0.682±0.004 0.696±0.003 0.453±0.004 0.678±0.004 0.840±0.001 0.714±0.003 0.651±0.003
w/o prune LN 0.773±0.003 0.494±0.003 0.715±0.006 0.703±0.003 0.458±0.005 0.687±0.004 0.845±0.002 0.718±0.004 0.658±0.010
Share propensity 0.773±0.003 0.490±0.004 0.715±0.006 0.702±0.004 0.459±0.004 0.689±0.003 0.844±0.002 0.722±0.003 0.658±0.007

Figure 5: Performance compared to baseline with varying pruning rate on the prediction model.

(R@K), and NDCG@K (N@K). The AUC evaluates the CVR pre-

diction accuracy and the NDCG@K and Recall@K evaluate the

recommendation quality for each user. The NDCG@K can be for-

mulated as below:

DCG𝑢@K =
∑︁

𝑖∈𝐷𝑢
lest

𝐼
(
𝑧𝑢,𝑖 ≤ 𝐾

)
log

(
𝑧𝑢,𝑖 + 1

) , (23)

NDCG@K =
1

|𝑈 |
∑︁
𝑢∈𝑈

DCG@K

IDCG@K

, (24)

where IDCG represents the best possible DCG, and 𝑧𝑢,𝑖 denotes the

ranking of the item 𝑖 among all items in the test set for the user 𝑖 .

With more accurate recommendations, 𝐷𝐶𝐺𝑢@𝐾 would increase

to be closer to 𝐼𝐷𝐶𝐺@𝐾 , leading to the NDCG@K closer to 1. The

Recall@K can be formulated as

Recall𝑢@K =

∑
𝑖∈𝐷𝑢

test

𝐼
(
𝑧𝑢,𝑖 ≤ 𝑘

)
min

(
𝐾,

��𝐷𝑢
test

��) , (25)

Recall@K =
1

|𝑈 |
∑︁
𝑢∈𝑈

Recallu@K . (26)

Following previous studies [13, 18, 23], because there are only 16/10

items in the unbiased data of Coat and Yahoo! R3 datasets for

each user, we set 𝐾 = 5 for Coat and Yahoo! R3. In addition, for a

larger dataset KuaiRec, we set 𝐾 = 50.

5.3 Performance Comparison
We show the prediction accuracy for all baseline methods and our

proposed method in Table 1. First, DR-based methods outperformed

the IPS-based methods and the naive methods without IPS or DR.

This validates the ability of the DR method in debiasing. Second,

among the DR-based baselines, ESCM
2
-DR performs the best for

all three metrics across all datasets, showcasing its great prediction

strength by using entire-space multi-task learning techniques. It

demonstrates that multi-task learning is useful for improving pre-

diction accuracy. Third, our method Adap-SL shows comparative

performance with the SOTA baseline models and obtained improve-

ments at AUC for all three datasets, which can be attributed to

Adap-SL is able to effectively and efficiently capture the prediction

model and imputation correlation.

5.4 In-Depth Analyses
5.4.1 Effects of pruning and sharing. We further explore the effect

of pruning or sharing in our method on debiasing performance.

We show the prediction accuracy of Adap-SL-DR w/o pruning,

w/o sharing parameters between the prediction and imputation

models in Table 2. In addition, we implement amodifiedmethod that

shares the parameters of the prediction model with the propensity

score model in Adap-SL-DR. We find that lacking either sharing

or pruning would harm the prediction accuracy. Meanwhile, this

harm is additive, leading Adap-SL w/o sharing and pruning to

perform even worse than Adap-SL-DR without either sharing or

pruning. Compared with the original Adap-SL-DR, Adap-SL-DR

without pruning linear layers would lead to significant performance

reduction at AUC on Coat and R@5, N@5 on both Yahoo! R3 and

KuaiRec datasets. It suggests that sharing linear layers is beneficial.
After sharing the parameters with the propensity scores model,

the method underperforms the original Adap-SL-DR. It might be

attributed to the propensity is related to the exposure mechanism

while the prediction/imputation is not, thus, sharing parameters

between these two is irrational.
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Figure 6: Performance compared to baseline with varying proportion of gradient included in pruning.

Table 3: Performance under different pruning mechanisms
on the unbiased test set of KuaiRec.

KuaiRec

Method AUC R@50 N@50

Adap-SL-DR 0.845±0.001 0.721±0.002 0.661±0.003
w/o prune pred 0.841±0.002 0.722±0.004 0.657±0.002
w/o prune impu 0.843±0.002 0.719±0.003 0.658±0.003
w/o prune 0.841±0.001 0.724±0.003 0.653±0.004

5.4.2 Effects of prune rate. Besides, we explore the effect of differ-
ent prune rates on debiasing performance. We show the variations

of AUC and NDCG on Yahoo! R3 and KuaiRec datasets with

prune rates varying from 0.05 to 0.25 in Figure 5. The metrics peak

at 0.1 or 0.15, suggesting a suitable pruning rate is necessary to

improve the debiasing performance. Though a larger pruning rate

may avoid overfitting, it also prunes some useful prediction units

in the model, leading to unsatisfactory prediction accuracy.

5.4.3 Effects of pruning on only prediction and imputation model.
We further evaluated the performance of Adap-SL-DR when prun-

ing only on the prediction model or the imputation model. The

model performance with KuaiRec is shown in Table 3. We observe

that only pruning the prediction model significantly reduces the

performance while only pruning the imputation model does not. It

is attributed to the different roles of these two models: the predic-

tion model plays the key role while the imputation functions as an

assistant to reduce bias and variance.

5.4.4 Effects of proportions of gradient. We show the AUC and

NDCG under different proportions of gradient in pruning for all

three datasets in Figure 6. For the case with the proportion of

gradient as 0, Adap-SL-DR only considers the weight for pruning,

while for other cases, Adap-SL-DR considers the weighted average

of the weight and gradient of each parameter for pruning. We find

that the different proportions of gradient used for pruning has little

impact on the model performance on Yahoo! R3 and KuaiRec
datasets. While it greatly influences the performance of Adap-SL-

DR in Coat. It is perhaps because the batch size of Yahoo! R3 and

KuaiRec is much larger than that of Coat. The gradient in a small

batch is much more influential compared with that in a large batch,

thus leading to the performance of Adap-SL-DR on Coat being
more vulnerable to different proportions of gradient.

Table 4: Percentage of remaining parameters after adaptive
pruning for prediction model and imputation model.

Yahoo! R3 Total remain Shared remain Specific remain

Prediction 42.19% 7.97% 76.41%

Imputation 78.00% 100.00% 56.00%

KuaiRec Total remain Shared remain Specific remain

Prediction 60.84% 54.32% 67.36%

Imputation 19.27% 38.01% 0.53%

5.4.5 Percentage of Remaining Parameters after Adaptive Pruning.
We present statistics on the percentage of remaining parameters in

the shared portion, specific portion, and total remaining parameters

of the prediction and imputation models after adaptive pruning. As

shown in Table 4, on Yahoo! R3, the percentage of total remaining

parameters of the imputation model is much larger than that of the

prediction model, while on KuaiRec the opposite is true. Looking
into the statistics, it can be seen that the reason for this observation

is the difference in the percentage of remaining parameters in the

shared and exclusive portions of the two datasets. In addition, for a

larger dataset kuaiRec, more knowledge may need to be shared.

6 Conclusion
In this paper, we introduced Adap-SL, a novel principled adaptive

structure learning approach for post-click conversion rate estima-

tion, which can adaptively learn the optimal network structure,

adjust the number of activated (non-zero) parameters, and deter-

mine which knowledge needs to be transferred between prediction

model and the imputation model. By leveraging adaptive pruning

and a partial sharing mechanism, Adap-SL starts with an over-

parameterized base network, where we adaptively extract partially

overlapped subnetworks for the imputation model and the predic-

tion model. Through extensive experimentation on three real-world

recommendation datasets, Adap-SL consistently demonstrates su-

perior performance with fewer parameters. One of the potential

limitations is how to design a more reasonable algorithm to prune

and to find an optimal structure instead of using the parameter

scale or gradient as the pruning rule.
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